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End of slide

Intro duction/Motiv ation

+ Topologically non-trivial �eld con�gurations (solitons and instantons) are
interesting because
ó They have lessclassicaland quantum corrections.
ó Often, they are relevant in the non-perturbativ e regime.

+ Supersymmetric solutions are also interesting (and, often, topologically non-trivial
as well).

+ Many topologically non-trivial Yang-Mills �eld con�gurations are realized as
topologically non-trivial gravitational con�gurations (this is the basisof
Kaluza-Klein theories):
ó The Dirac monopole con�guration is realized in the KK monopole.
ó The BPST instanton con�guration is realized in solutions with S7 subspaces.
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We are going to classify the
maximally supersymmetric

vacua of SUGRAs with 8 Qs
and �nd an interesting example
of maximally supersymmetric,
topologically non-trivial �eld
con�guration of SUGRA that
corresponds to a well-known
Abelian Yang-Mills instanton

con�guration .
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1 { SUGRA Vacua

The vacuum is the most important state of any QFT:

? Usually de�ned as the state with lowest energy.

? Usually enjoys a high degreeof (residual) symmetry . This symmetry determines all the
kinematical properties of the QFT (conserved charges, spectrum etc.)

? In (Special-Relativistic) QFT it is required that the residual symmetry of the vacuum
includes the Poincar�e group.
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Theories that contain gravit y de not have a unique vacuum:

? There is no absolute scaleof energy, which has to be measuredrelativ e to a vacuum.
There is no absolute lowest energy state.

? Vacua are identi�ed by their high degreeof symmetry and absenceof singularities which
may be associated to sources.

? The full Poincar�e group is not contained in any vacuum symmetry group. Only (when it is
a solution) Mink owski spacetime is invariant under it.

? One can view the lesssymmetric vacua as spontaneously breaking the symmetry of the
most symmetric vacuum.

? Finally , only subspacesinvariant under the corresponding Poincar�e (or (anti-) De Sitter )
subgroups are interpreted as spacetime, the rest being interpreted as internal directions
associated to internal symmetries, global or local (of Yang-Mills type). This is the
Kaluza-Klein mechanism.

Clearly, the most important question is

\Ho w should (w e or the theory) choose the vacuum?"

April 29th 2004 Univ ersity of Tel Aviv P age 2
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The problem of choice of vacuum is so di�cult that we choosea simpler question:

\Whic h vacua are there?"

As a �rst step towards the classi�cation of all vacua, we may start by �nding those with
residual supersymmetry i.e. bosonicsolutions of SUGRA theories which are invariant
under somesupersymmetry transformations.
Generically, the SUSY transformations take the form

� � B � ��F ; � � F � @� + B � : (1)

Then, a bosoniccon�guration (F = 0) will be invariant under the in�nitesimal
supersymmetry transformation generatedby the parameter � � (x) if it satis�es the
Kil ling spinor equation

� � F � @� + B � = 0: (2)

This is a generalization of the concept of isometry, an in�nitesimal generalcoordinate
transformation generatedby � � (x) that leavesthe metric g�� invariant becauseit
satis�es the Kil ling (vector) equation

� � g�� = 2r ( � � � ) = 0: (3)

April 29th 2004 Univ ersity of Tel Aviv P age 3
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To each bosonicsymmetry we associate a generator

� �
( I ) (x) ! PI ;

of a symmetry algebra
[PI ; PJ ] = f I J

K PK :

The supersymmetriesare associated to the odd generators

� �
(n ) (x) ! Qn ;

of a superalgebra

[Qn ; PI ] = f n I
J PJ ; f Qn ; Qm g = f n m

I PI :

These will be the sup eralgebras of the QFTs constructed on these vacua!

April 29th 2004 Univ ersity of Tel Aviv P age 4
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This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .

However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the

à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-a



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras

à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-b



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras

à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-c



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras

à and in the acuum superalgebrasthat we are going to see.
We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-d



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-e



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries.

In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-f



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-g



G•odel Spacetimes and Flacuum Solutions

End of slide

This suggeststhat it may su�ce to classify all the possiblesuperalgebras, something
done by Ka�c for the semisimpleones. Of physical interest are only those with bosonic
symmetry aDSn � Sm .
However, someof the most interesting superalgebrasare not semisimple. In particular,
the bosonicsubalgebrageneratedby the PI s is not semisimplein the
à Poincar�e superalgebras
à Kowalski-Glikman Hpp-wave superalgebras
à G•odel superalgebras
à and in the acuum superalgebrasthat we are going to see.

We are bound to �nd the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6) maximally symmetric

April 29th 2004 Univ ersity of Tel Aviv P age 5-h



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0)

f ea
� ; B �

�� ;  +
� g S =

Z
d6x

p
jgj

�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1

f ea
� ; V� ;  � g S =

Z
d5x

p
jgj

�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2

f ea
� ; V� ;  � g S =

Z
d4x

p
jgj

�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g

S =
Z

d6x
p

jgj
�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1

f ea
� ; V� ;  � g S =

Z
d5x

p
jgj

�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2

f ea
� ; V� ;  � g S =

Z
d4x

p
jgj

�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6-a



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g S =

Z
d6x

p
jgj

�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1

f ea
� ; V� ;  � g S =

Z
d5x

p
jgj

�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2

f ea
� ; V� ;  � g S =

Z
d4x

p
jgj

�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6-b



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g S =

Z
d6x

p
jgj

�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1 f ea
� ; V� ;  � g

S =
Z

d5x
p

jgj
�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2

f ea
� ; V� ;  � g S =

Z
d4x

p
jgj

�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6-c



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g S =

Z
d6x

p
jgj

�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1 f ea
� ; V� ;  � g S =

Z
d5x

p
jgj

�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2

f ea
� ; V� ;  � g S =

Z
d4x

p
jgj

�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6-d



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g S =

Z
d6x

p
jgj

�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1 f ea
� ; V� ;  � g S =

Z
d5x

p
jgj

�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2 f ea
� ; V� ;  � g

S =
Z

d4x
p

jgj
�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6-e



G•odel Spacetimes and Flacuum Solutions Index

Slide 6 / 22
p

� SUGRA V acua . 1
) � 8Q SUGRA V acua 6

� Timelik e KK . . 10
� The Flacuum . . 13
� Conclusion . . . 21

End of slide

2 { 8Q SUGRA Vacua

The smallest spinor in d � 7 has 16 real components. Then the SUGRAs with 8
superchargesin d > 3 are just

Theory Fields Bosonic Action

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g S =

Z
d6x

p
jgj

�
R + 1

24 (H � )2
�

; ?H � = � H �

d = 5; N = 1 f ea
� ; V� ;  � g S =

Z
d5x

p
jgj

�
R � 1

4 F 2 + 1
12

p
3

�p
jgj

F F V
�

d = 4; N = 2 f ea
� ; V� ;  � g S =

Z
d4x

p
jgj

�
R � 1

4 F 2
�

April 29th 2004 Univ ersity of Tel Aviv P age 6-f



G•odel Spacetimes and Flacuum Solutions

End of slide

These(Lorentzian) theories are related by dimensional reduction and the relation
betweenthe �elds and supermultiplets of thesethree theories can be described as follows

d = 6; N = (1; 0) f ea
� ; B �

�� ;  +
� g

d = 5; N = 1 f ea
� ; V� ;  � g f A� ; k; � g

d = 4; N = 2 f ea
� ; V� ;  � g f A� ; k; l � g

All the solutions of the lower-dimensional theories are also solutions of
the higher-dimensional ones with the same unbrok en sup ersymmetries .

The solutions of the higher-dimensional theories are solutions of the
lower-dimensional ones with the same unbrok en sup ersymmetries if they
giv e rise to no matter �elds.
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� ; V� ;  � g f A� ; k; � g

d = 4; N = 2 f ea
� ; V� ;  � g f A� ; k; l � g

All the solutions of the lower-dimensional theories are also solutions of
the higher-dimensional ones with the same unbrok en sup ersymmetries .

The solutions of the higher-dimensional theories are solutions of the
lower-dimensional ones with the same unbrok en sup ersymmetries if they
giv e rise to no matter �elds.
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The maximally supersymmetric solutions of the three theories are related as follows:

d = 6 aD S3 � S3 K G6

d = 5 aD S2 � S3 aD S2 ? S2 aD S3 � S2 H 2 ? S2 G5 K G5

d = 4 aD S2 � S2 K G4

P enrose limit

aD S 3 � S 3 is the NHL of the extreme selfdual string.

K G 6 is the PL of aD S 3 � S 3 .

aD S 2 � S 3 is the NHL of the extreme blac k hole.

aD S 2 ? S 2 is the NHL of the extreme rotating BMPV blac k
hole.

aD S 3 � S 2 is the NHL of the extreme, critically rotating
BMPV blac k hole and of the extreme string.

H 2 ? S 2 is the NHL of the extreme ov errotating BMPV blac k
hole. ( Fiol, Hofman, Lozano-T ellec hea, hep-th/0312209 )

K G 5 is the of the PL of the aD S n � S m families.

G 5 is the of a singular limit of the H 2 ? S 2 family .

aD S 2 � S 2 is the NHL of the extreme RN blac k hole.

K G 4 is the of the PL of aD S 2 � S 2 .
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All the d = 5 vacua metrics are U(1) �brations over a d = 4 basespace(time). For
instance:

aDS2 ? S2

ds2 = � (d + ! ) 2 + (R 3 =2) 2 [d� 2
(2) � d
 2

(2) ] ;

F = �
p

3
2 R 3 (cos� ! aD S 2 � sin � ! (2) ) :

! = R 3 =2(cos� cos � d' + sin � cosh�dt ) :

H2 ? S2

ds2 = (dt + ! ) 2 � (R 3 =2) 2 [dH 2
(2) + d
 2

(2) ] ;

F = �
p

3
2 R 3 (sinh � ! H 2 + cosh� ! (2) ) ;

! = R 3 =2(cosh � cosh�d� � sinh � cos � d' ) ;

(G•odel) G5

ds2 = (dt + ! ) 2 � d~x 2
4 ;

V = �
p

3! ;

! = � (x 1 dx 2 � x 3 dx 4 ) :

The spacelike �brations over base
spacetimesare usedin standard KK
reductions. ! becomesthe d = 4
Maxwell �eld .
Can we exploit timelik e �bra-
tions over a Euclidean space
to o?
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3 { Timelik e KK

It is possible to perform Kaluza-Klein dimensional reductions on timelik e directions. The
original (Lorentzian) theory is reduced to an Euclidean theory and its solutions (with
timelik e U(1) �brations) are reduced to Euclidean solutions that may be interpreted as
instantons.

W e are going to timelik e-reduce the d = 6; 5 theories and solutions

+ This procedure for obtaining Euclidean theories and solutions is always consistent.

+ Wick rotations give the sameresults but have ambiguities and problems in presenceof
fermions, as in SUGRA.
ó Observe the problems one facesin the Wick rotation of a theory a simple as

N = 1; d = 4 SUGRA whose Euclidean version cannot be found in the literature.

+ We will deal only with Dirac fermions, but it is not always clear if we are dealing with
vector or pseudovector �elds, whose Wick rotations require an extra factor of i .
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The timelik e (T) and spacelike (S) reduction of the SUGRAS with 8 superchargesgoes
as follows:

d = 6; N = (1; 0) (L)

d = 5; N = 1 (L) d = 5; N = 1 (E)

d = 4; N = 2 (L) d = 4; N = 2� (E) d = 4; N = 2� (E)

S T

S T

S

� There is no (known) Euclidean 8Q SUGRA in d = 6 (selfdualit y can't be Wick-rotated).

� There is only one way possible Wick rotation of the d = 5 theory if we want a real action.

� These two theories are related by V� ! iV� .
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Now we get new Euclidean solutions as well:

aD S3 � S3 K G6

aD S2 � S3 aD S2 ? S2 aD S3 � S2 H 2 ? S2
� H 2 ? S2

+ eG5 G5 K G5

aD S2 � S2 H 2 � S2
� H 2 � S2

+ f l ac: K G4

P enrose limit

H 2 ? S 2
+ is a new family of Euclidean solutions, similar to H 2 ? S 2

� , but no w with a spacelik e fibration .

eG 5 is a Euclidean v ersion of the G•odel spacetime G 5. It can also b e obtained b y a singular limit pro cedure from H 2 ? S 2
+ .

H 2 � S 2
� H 2 � S 2

+ are solutions of differen t theories and are related b y analytical con tin uation.

The f lacuum solution is a sp ecially in teresting non-trivial solution with flat Euclidean space that can b e also b e obtained b y
a singular limit pro cedure from the H 2 � S 2

� v acua.
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4 { The Flacuum

As we have seen, the dimensional reduction of the
G•odel solution of d = 5; N = 1 SUGRA given by

(G•odel) G5

ds2 = (dt + ! ) 2 � d~x 2
4 ;

V = �
p

3! ;

! = � (x 1 dx 2 � x 3 dx 4 ) :

leads to a non-trivial, maximally su-
persymmetric Euclidean solution of
d = 4; N = 2 SUGRA (i.e. of the
Einstein-Maxwell theory) with at
space and constant anti-selfdual
�eld strength ?F = � F (F 12 =
� F 34 = �= 2)

The f lacuum solution

� ds2 = d~x 2
4 ;

V = 2! ;

! = � (x 1 dx 2 � x 3 dx 4 ) :

A constant, anti-selfdual U(1) �eld strength certainly solves the Maxwell equation in at
spacetime, but,

how can at spacebe a solution in presenceof non-trivial matter?
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The positivit y properties of the action and the energyare opposite in Lorentzian and
Euclidean signatures:

Loren tzian Euclidean

Action : � F 2 = E 2 � B 2 � F 2 = E 2 + B 2 > 0

T�� : F �
� F � � + ?F �

� ?F � � > 0 F �
� F � � � ?F �

� ?F � �

In particular, selfdual and anti-selfdual Maxwell �elds (that can only be de�ned in
Euclidean signature) have a vanishing \ energy-momentum" tensor. In general, (anti-)
selfdual (non-) Abelian Yang-Mills con�gurations have vanishing energy-momentum
tensorsand almost decouplefrom the metric.
The decoupling is not complete because(anti-) selfduality F �� = � ?F �� has to be
proven w.r.t. to a given metric:

F �� = �
1

2
p

jgj
g�� g� � � �� �� F �� :

) If F = � ?F and R�� = � g�� , then G�� + � g�� = 1
2 T�� ; and r � F �� = 0
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Two simple examples:

The BPST SU(2) instanton
F = � ?F with any conformally at metric. Since F ! 0 at 1 we can take that of
the round S4

ds2 = �
d~x 2

4

(1 + (r =2R)2)2
; ) R�� =

1
R2

g�� :

Then, F satis�es the Yang-Mills equation on S4 and also the Einstein equation with

cosmological constant � = 1=R2. (This is the Hopf �bration S7 S 3

! S4)

The acuum U(1) solution
F = � ?F with any conformally at metric. However, since F is constant, we have to
stay with R4 which, at most, we can compactify on a torus to have a �nite action.
R�� = 0 and the Einstein equation is satis�ed with zero cosmological constant.
Observe that taking the gauge group as U(1) is equivalent to take the time periodic
in the G•odel solution.
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One slightly more complicated example:

The Hopf bundle S5 S 1

! CP2

S2n +1 is the complex hypersurface in Cn +1 with equation z� �z� = 1 ; � = 1; � � � ; n; ] .

It is convenient to change coordinates z� ! u; �; � i ; i = 1; � � � ; n

� = jz] j ; u = z] =� ; � i = zi =z] ; ( projectiv e coordinates in CPn )

in which S2n +1 is � =
1

1 + � i �� i
.

Now we substitute the S2n +1 equation into the Euclidean metric on Cn +1 , ds2 = dz� d�z� , to
�nd the metric of the round S2n +1 .
It takes the form

ds2
S 2n +1 = ds2

CPn + ! 2 ;

ó ds2
CPn = gi �| d� i 
 d�� j + g�{j d�� i 
 d� j is the Hermitean Fubini-Study metric on CPn .

ó ! = u� 1du + A where A is a U(1) connection on CPn such that

dA = igi �| d� i ^ d�� j � K ;

the K•ahler 2-form K , which is, therefore, closedL dK = d2A = 0.
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ó K , is also co-closed?d?K = 0, so CPn is K•ahler and K therefore solves the Maxwell
equations on CPn (Trautman , 1977).

ó Do the Fubini-Study metric and the K•ahler 2-form solve the Einstein-Maxw ell equations
as well?

ó The components Tij and T�{ �| trivially vanish:

Tij = K i �k K j �l g
�k �l � gij K 2 = 0 ;

and the components Ti �| and T�{j vanish for n = 2:

Ti �| = K i �k K l �| g
�k l � 1

4 gi �| (2K k �l g
�lm K m �n g�n k ) = � gi �| + 1

4 gi �| 2n :

ó Then, since the Fubini-Study metric solves the Einstein equations with cosmological
constant � = +6, we have another solution of the Euclidean Einstein-Maxw ell equations.
The embedding of this solution and the BPST instanton in supregravit y are problematic.

Other solutions with vanishing Euclidean energy-momentum tensor can be obtained by
time-lik e compacti�cation of other G•odel solutions

.
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To compactify the solution on T 4 we take the quotient of R4 by the Z4 Abelian group of
discrete translations along the four coordinates xa with periods l a .

The vector �eld of our solution (in a new gauge)

V = � (x1dx2 � x2dx1 � x3dx4 + x4dx3) � Fab xa dxb ;

is not strictly periodic on T 4: when we move around the a-th period from x to x + â it changes
by a gauge transformation

V (x + â) = V (x) + d� a (x) ; � a (x) = l ( a) F ( a) bxb ;

where � a (x) are the U(1) parameters, de�ned modulo 2� .

Consistency requires that V (x + â + b̂) = V (x + b̂+ â), that is

� a (x + b̂) + � b(x) = � b(x + â) + � a (x) mod(2� ) ;

which in our caseimplies
�l 1 l 2 = � n ; �l 3 l 4 = � m ;

for two integers n; m that label the possible non-trivial bundles.

The Euclidean action of the SUGRA solutions is

S = � 4� 2jnm j :
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To compactify the solution on T 4 we take the quotient of R4 by the Z4 Abelian group of
discrete translations along the four coordinates xa with periods l a .

The vector �eld of our solution (in a new gauge)

V = � (x1dx2 � x2dx1 � x3dx4 + x4dx3) � Fab xa dxb ;

is not strictly periodic on T 4: when we move around the a-th period from x to x + â it changes
by a gauge transformation
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V (x + â) = V (x) + d� a (x) ; � a (x) = l ( a) F ( a) bxb ;

where � a (x) are the U(1) parameters, de�ned modulo 2� .

Consistency requires that V (x + â + b̂) = V (x + b̂+ â), that is
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Is supersymmetry preseverved by this quotient?

Consistency requires that the Killing spinor can be identi�ed with itself after a translation
around one of the periods:

� (x + â) = Oa � (x) ;

where Oa is a holonomy rotation of the spinor which, conventionally , must be contained in
SO(4).

What we actually �nd is

Oa = expf� l ( a )

8 6F ( a) g ;

which is the spinorial representation of the mutually commuting translation operators and are
not contained in SO(4).

Its has been argued that (Du�, Lu, Hull, Papadopoulos, Tsimpis) whant should be considered
is the generalizedholonomy of the supergravit y theory, which is basically that of the gravitino
supersymmetry transformation rule (the Killing spinor equation).

In this sense,the above transformations belong to the generalizedholonomy group of
N = 2; d = 4 SUGRA which is SL (2; H) (Batrachenko, Wen hep-th/0402141 ).
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The symmetry superalgebra of the acuum solution is particularly interesting becauseit is a
deformation of the supertranslation algebra that preserves the commutativit y of momenta but
modi�es slightly the anticommutator of the supercharges (Berkovits and Seiberg)

n
Qy

( � ) ; Q( � )

o
= ( 1  a )�� P ( a)

+ ( 1 5)�� P (0)

� [ 1 1
2 (1 �  5)] �� M ;

�
Q( � ) ; P ( a)

�
= � Q( � ) � s (P ( a) )�

� ;

�
Q( � ) ; M

�
= � Q( � ) � s (M )�

� ;

�
P ( a) ; M

�
= � P ( b) � v (M )b

a ;

�
P ( a) ; P ( b)

�
= F ab P (0) :

The quantization of the string on this background leads to a non-commutativ e Field Theory in
which only the fermionic superspacecoordinates anticommute anomalously.

This superalgebra can be obtained by dimensional reduction of
the G•odel superalgebra, in which the momenta P( a) do not com-
mute, but give P (0) which should be interpreted as the generator
of U(1) gauge transformations on d = 4. This property is, pre-
cisely, what allowed us to relate the periods of the torii.
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5 { Conclusion

? We completed the classi�cation of Lorentzian and Euclidean
maximally supersymmetric vacua with 8 supercharges.

? We have found a solution, the acuum solution with very interesting properties and
that can be generalized to other dimensions (always as a timelik e reduction of a
G•odel-type solution).

? We have seenthat the acuum solution can be interpreted as a known instanton
solution over T 4 which here is maximally supersymmetric.

? We have discussedhow the compacti�cation a�ects the residual supersymmetry of the
solution, which is a delicate point becausethe holonomy of the solution is not
contained in SO(4).

? We have determined the symmetry superalgebra of the acuum solution. We notice
that the symmetry superalgebras of all the maximally supersymmetric vacua are
always deformations of the supertranslation (superPoincar�e) algebra, which may allow
to classify and �nd all these vacua.
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