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1. Introduction: String dualities from the string ef-
fective action.
Examples:

(a) Bosonic string T duality.
(b) 4-d S duality.

(c) d = 11 SUGRA as the strong-coupling limit
of the type IIA string.

(d) Type II superstring T duality.

2. Generalized dimensional reduction.
(a) Definition and examples.

(b) A toy model and physical interpretation.

3. Type IIB S duality and GDR.
(a) 9-dimensional massive type II theories.
(b) Physical interpretation: pg-7-branes.

(c) Eleven-dimensional origin and T duality.



Introduction/Motivation

All superstring dualities which act on
the massless sector manifest themselves
in the effective action. All one needs to
have is a good dictionary: (p 4+ 1)-form
potentials are associated to p-branes and
scalars to moduli (S moduli are coupling
constants). The effective field theories
of compactified superstring theories can
be obtained by standard Kaluza-Klein
dimensional reduction (i.e. keeping
only the massless zeromodes.) String
dualities involving compactification can
be studied through these field theories.




Example 1.

Bosonic String T Duality

(invariance under the exchange of winding
and momentum modes together with the in-
version of the compactification radius) corre-
sponds to the symmetry that appears when
the d-dimensional string effective action:

S = [diz\/|g] e=2% |R— 4(06)? + 55 2] ,

is dimensionally reduced to d = (d — 1) di-
mensions

fdyfdd:c\/m e 29 [R — 4(¢)?

—3k2F2(A) — 3k72F2(B) 4 55 H?]

under the involution

Ay < By,
Maharana & Schwarz,
Bergshoeff, Kallosh, & T.O.

E « k1



Physical Interpretation:

Observe that k(x) = gyy(x) is the local ra-
dius:

2nR(z) = / dyk(z) = k(z) / dy

so the radius is inverted in T duality.

On the other hand, in the full KK/string
spectrum, there are massive particle states
charged with respect to

and with respect to
2.- B, = Byy (winding modes).

Thus, we can also see in the effective ac-
tion that momentum and winding modes are
interchanged.

Finally: in d-dimensional language we have
simply obtained Buscher’s T duality rules.

T. Buscher




Example 2.

Four-Dimensional Superstring S Duality
(strong-weak coupling duality) manifests it-
self in the classical SI(2,R) invariance of the
N = 4,d = 4 SUGRA action (which is the
effective action of the heterotic superstring
compactified on T9):

S = [d*s\/lgp| [Rp + 2(8¢)?

—|—%e4¢(8a)2 — %e_QQbFIFI — %aFI*FI} :

under
ax+b (F\ _ (ab)\(F
e+ d’ F c d F |

where
A=a-+ie % :

and
*.7:=e_2¢F—|—a*F, ad —bc=1.



Physical Interpretation:

e? is the string coupling constant (it works
like a local coupling constant).

a (the pseudoscalar axion) is like a local 8-
parameter (even though here we only have
Abelian vector fields).

Si(2,R) is generated by two kinds of trans-
formations:

A— —1/\,

which inverts the coupling constant and

A — A 4 constant,

(Peccei-Quinn-type shifts of the axion).

A. Sen




Example 3.

11-Dimensional SUGRA as the String-
Coupling Limit of Type IIA Superstring
Theory

(in the strong-coupling limit, type IIA super-
string theory, which is a 10-dimensional the-
ory, behaves effectively as an 11-dimensional
one. The effective field theory in the strong-
coupling limit can only be the unique 11-
dimensional supergravity.)

This can actually be seen by performing the
standard Kaluza-Klein dimensional reduction
of 11-dimensional SUGRA down to d = 10,
N = 2A SUGRA (the effective field theory of
the type IIA superstring) and then one can
find the relation between the radius of the
11th dimension and the dilaton (the string
coupling constant).

Witten

Let us introduce the bosonic sectors of 11-
dimensional SUGRA and d = 10,N = 2A
SUGRA.



Thed=11,N = 1 SUGRA

Fields: {3

i

—

Field strengths: G = 48C.

—~
—~

Remark: the transformation ¢ — —C
does not leave invariant the action.
There are, in fact two 11-dimensional
SUGRASsS. The difference is the sign in
the topological term

Cremmer, Julia & Scherk




d = 10, N = 24 (non-chiral) SUGRA (I)

where
NS-NS fields: {gz5, Bjio, ¢}

RR potentials: {C(1),C(3);;5}.

10



d =10,N = 2A (non-chiral) SUGRA (II)

Field strengths:

4 ~

H = 30B,

G2 = 2001)

N\

6@ = 4(00® —30B0W)

\

Remark: there are two different
d = 10,N = 2A SUGRASs as well. The
difference is the sign in the topological
term. Again, they are related but not
equal.

Huq & Namazie,
Giani & Pernici,
Campbell & West,

11



The fact that the reduction of d =11, N =1
SUGRA to 10 dimensions gives a 10-dimensional,
N = 2 non-chiral theory (called N = 2A) was
well-known. However, the action had never
been written in stringy variables and the re-
lation of the stringy variables with the 11-
dimensional fields was unknown. That rela-
tion is given by

(G = e PG — 0w, 00,
éﬁg — _€§$é(l)ﬁa

< 52 = —eif
Caog = C®pgp,

| Ciw: = B,

The radius of the compact dimension is re-
lated to the dilaton by

27 R, (x) = /dz\/|gzz(:13)| = ega(x)/dz.
In the strong-coupling limit e® gets big and

so does R,. The 11th dimension becomes
Macroscopic.

12



Example 4.

Type IT Superstring T duality

(the exchange of winding and momentum
modes of strings and D-branes together with
the inversion of the compactification radius
takes us from type IIA to type IIB theory and
vice-versa) manifests itself in the fact that
the dimensional reduction of thed = 10, N =
2A SUGRA action and the T dual dimen-
sional reduction of the d = 10,N = 2B
SUGRA action give the same d = 9,N = 2
theory

d=11 N=1

d=10 IIA 1B

v

Dai, Leigh & Polchinski,
Dine, Huet & Seiberg,
Bergshoeff, Hull & T.O.

Let us introduce d = 10, N = 2B SUGRA.
13



The d = 10, N = 2B (chiral) SUGRA
“NSD Action” (I)

The equations of motion of d = 10, N = 2B
supergravity can be obtained from the “non-
self-dual” action

? |R(G) — 4 (09)? + 55 A2

{72
1(aON2 L 1 (a2 L 1 (aBG)?
+5 (GO)" + 55 (G®)" + %5 (¢4

where

NS-NS fields: {]ﬁ,’;,B",’),@}

RR potentials: {C’(\O),C(Q)ﬁ,’),c(zl)"ﬁﬁa-

14



The d =10, N = 2B (chiral) SUGRA
“NSD Action” (II)

Field strengths:

7 —~

H = 308,
GV = 90O
< G® = 3(8C® —9BCO)
| G® = 5(3C™ —60BC?) .

The equations of motion derived from the NSD action
have to be supplemented by the self-duality condition

GO = 4 *GO®) |

Remark: there are two different
d = 10,N = 2B SUGRAs, with (anti-)
self-dual 5-forms and opposite chiralities. The
sign of the topological term is different.

Bergshoeff, Boonstra & T.O.

15



d=9,N =2 SUGRA (I)

In the Einstein frame, the fields are

{gE Nz A(S) UUp? A(Q) nz A(l) J7g A(l) o K, M} )

J &z \/lgE] {RE+ =2 (dlog K)? + 2 Tr (BMM_l)Q

1
FK 2R — LK F M E
a3 3'K 3 YF(31;M 1F(3) - ﬁK6/7F(24)

1 1 2 AT A
_27.32\/@ € {16(614(3)) A(l) — 24814(3)814(2)7’]14(2)

136 (A(g)naA(l) 4 A(lT)naA(Q)> 0A ZnA

o o o 5 2

16



The field strengths are given by

( Fpy = 204,
Fpy = 2044,
{ Fzsy = 304p) —340Fy),
Fay = 4aA(3)—3A’(;_F) n Fo
\ +2A ) n Fzy = 6AmA L) 1 Foy

Remark: yet again, there are two different
d = 9,N = 2 SUGRASs, with topological terms
different by a sign. The difference is the sign in
the topological term. Both signs are necessary
to accommodate the two N =2A and N = 2B
theories.

17



d =9, N =2 SUGRA can be obtained from
d =10, N = 2B SUGRA by dimensional re-
duction using the identifications
Rk C(0)
M — 695 ’
c@® 1
K — e@/3|j%|_2/37
A(l) u — jug/j@a
. @,
Ay p = ) ;
) c@,,
Ay w = ) ;
BIJ,]/
— 2 3R A 3P A
Ay wp = COuipy = 3B C® gy = 3By C P,y
95w = e |Guw = FuTon/Tm]

18



d =9, N = 2 SUGRA can also be obtained

from d = 10, N = 24 SUGRA by dimensional
reduction using the identifications

M =
e—2$|§m| + (Cf(l)x)Q C),
€% e | 7112 B _ E
- o, 1
K — €$/3|.’9\@|1/27
Awy . = —Bu
- é(l)u — é(l)zguz/gﬂ
Ay p = . ’
_guz/gﬂ
Ay w =
C® e + 2B, OV ) — 20NV, B1118012/ Gua
B/w - 23[u|§|§V]£/§ﬂ
_ A 35O g
AG)y wp = C<3)Wﬂ - Eg[ulzlc(3)Vp]£/gﬂ
3 A e ~ —~
—50(1)§9[N|Q|BWJ/9@ — C( )[u vp] s
9E v = e /|Gy, |Y7 i — Guagve/ Gua) -

19



Comparing both sets of relations one finds
the type II generalization of Buscher’s T du-
ality rules.

From IIA to IIB:

NSNS fields
Jww = G — (@@51@ - B/@BI@) /Gzzs Juy = —Buz/Gs,
pr - B;u/ + 2§[p|géy]£/§@ ) B\Mg - _gﬂﬁ/gﬂ’
@ = $—%Iog|§£|, Jyy = 1/Gea,
RR forms
C‘«(Qn)ulmwn — @(2n+1)m‘_mn£ + 2n B[m@l@(2n—1)ﬂ2m#2n]

—2n(2n — 1)B[mlzlgﬂzlzlO(zn_l)ua---ugn]z/gﬂ7

-~

2 — A(2n—1
C( n),ul---lLQn—lg - C( " )ul---uzn—l

—(2n — 1)"q\[lul|£|O<2”_1>u2...p2n—1]£/§ﬂ :

20



From IIB to IIA:

NSNS fields
G = T~ (Jugdoy — BuBuy) /Gy, Guz = —Buy/Tw.
Blu,y = B/w + 2.7[p|g|gy]g/j% 3 BME = —jug/j% ’
b = ¢—1100 7, Ger = 1/7w,
RR forms
é(2n+l)u1---u2n+1 = é(2n+2)u1---/~t2n+1g
—(2n + 1)B[M1|g|é(2n)uz---ﬂ2n+1]
é(2n+l)p1...u2n£ — é(2n)u1...u2n

+2nj[ul |Q| C’(Qn)lj,z.../lan]g/j% .

Bergshoeff, Hull & T.O.

21



Physical Interpretation:

e [ he NSNS sector rules are the same as in
the bosonic case: KK momentum modes
and winding modes are also interchanged
here together with the simultaneous in-
version of the compactification radius.

e States charged with respect to the RR

(p+1)-form potentials ¢(?+1) (D-p-branes)
are interchanged

o) o, o)

D-p-Branes wrapping around the com-
pact dimension are transformed into D-
(p-1)-branes and vice-versa.

Polchinski

e The type IIB SI(2,R) o-model scalars are
the moduli of the local internal torus on
the type IIA side. As such, they should
be identified when they are related by
Sl1(2,7) transformations (the modular trans-
formations of the torus).

22



Understanding GDR: A Toy Model

In standard Kaluza-Klein theory in the vac-
uum R x S1 (z# = (¥, 2)) only single-valued
field configurations are considered. They can
be Fourier-expanded in the compact coordi-
nate z ~ z 4+ 2n¢:

q’g(@) — Z 627rnz/£ $(n)(x)

nez

Then, only the massless () (z) = &(x) is
kept.

However, some fields can also be multival-
ued if the different values are related by a
gauge transformation or other kinds of iden-
tifications. For example, if the scalar ¢ =
é+2mm, then possible field configurations fall
into different topological sectors labeled by
N € Z

mN z

dM(@) ==,

4 Z 627Tnz/£ &E(n)(x) .

nez

A field like ¢ living on S1 (an axion) can only

appear through 9¢ so the lower-dimensional

theory does not depend on z if only mévz

#0)(2) is kept.

23



Remarks:

1. The action for gZ i§ necessarily invariant under
constant shifts of ¢ but but not any invariant
action corresponds to a scalar living in S1.

2. In the N # 0 sectors the zeromode ¢ = (% trans-
forms underéz = —A(x) by shifts

§p = VA,

called massive gaugde transformations. This
means that it can be gauged away i.e. it is “eaten”
by the KK vector which becomes massive. Gauge
invariance is spontaneously broken.

3. Mathematically, for N # 0, each ¢ is a sec-
tion of a fiber-bundle with fiber S! and the d-
dimensional space as base-manifold.

4. Each sector is characterized by the topological
charge

which is the winding number.

5. A choice of topological sector is a choice of vac-
uum. In particular, there must be a solution with
¢ = mNz/L. We are going to see that we can
understand the new vacuum as one containing a
(d — 3)-brane in d dimensions which can be rep-
resented by that solution.

24



LLet us consider the simple model

_/dd\/g R+1(09)°] .

We make the standard KK ansatz for the metric (zero-
modes) but we use for the scalar ¢(z, z) = ¢(z) + mz.
(The rule of thumb to find the right ansatz is: if the
action is invariant under constant shifts then make a
shift linear in z). The result is

[dle\/lgl k |R—3K2F%) + 5 (D)’

~im2k2] |

where the field strengths are defined by
Foy w = 2040) v 0z = =X,
o = mx,
D'u,gb — 8ugb—mA(1) W 5A(1) w o — GMX.

¢ is a Stueckelberg field for Ay ,, which becomes
massive by “eating” it. We could have Hodge-dualized
the scalar into a (d—3)-form potential before reducing.
Then the standard KK reduction of the equivalent
model

= i /= [ 4 (m1)E@ 20
S_/dw |g| [R+2(d 1)IF(d 1)]
gives

(=1)42 5o
+2(d 1)'F(d 1)

§ = [d¥lz/[g] k [R 1k2F2,

(=1)“ 3) —2 2
+2(d 2)1 F(d 2)]

25



(d\— 1)8A(d‘_2) + (—1)(d_1)A(1)F(J_2) 3

o
T&o
—
N
I

Flgo = (d—2)0Ag 3,

are the field strengths of the (d—2)- and (d— 3)-form
potentials of the (d— 1)-dimensional theory. Dualizing
the two potentials one gets one scalar, ¢ and one
constant m.

We get the same theory as via GDR.

The mass parameter can be understood as
the dual field strength of a (d — 1)-form
potential which couples to (d — 2)-branes
(domain walls). These objects do not carry
any continuous degrees of freedom. They
only carry topological degrees of freedom.
Either you have them on your background
or you don’t, and that property, together
with the classical solution, defines a vac-
uum. Remark: AdS space can be seen as a
domain-wall solution and determines a vacuum.

26



v

(a-3) (d-2)
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S Duality in Type IIB Theory

d = 10, N = 2B SUGRA has an S duality global sym-
metry. It only becomes manifest in the Einstein frame.
We made the following field-redefinitions

(T = €%,
> O2)
- (7))

) D = CW _3BC3,

| )\|2 C(0)
M = 6('5 3

cO 1

\ A = CO 4 e %,

and arrive at the following NSD action

SNsD =

f @z /sl | RGi) + 3Tr (0014471)?

1 97 T xy-147 1 g2 _ 1 ¢ AOT 4
Fs5H TMTH A+ 5 F - 55 = DH nH| ,

9

28



—~

—

where n;; = —€;j5, H = 308 and we have to impose the
self-duality of the 5-form field strength.

The new fields transform under A € SI(2,R) according
to

M AMANT

B = AB.

The remaining fields are inert and the action and self-
duality constraint are invariant.

The rotation of 2-forms corresponds to the rotation of
NSNS (“q") strings into RR (“p") strings and similarly
for 5-branes.

Via T duality M can be identified with the moduli of
the torus on which 11-dimensional SUGRA is com-
pactified. Values of the moduli related by Si(2,7)
transformations must be considered equivalent.

Now, if we identify two field configurations related by
Sl1(2,7) transformations we can have different topo-
logical sectors in the compactification: “multivalued”
field configurations such that going around the com-
pact dimension once lead you to the same configura-
tion up to an Si(2,7Z) transformation. Each topo-
logical sector is defined by one Si(2,7Z) transformation
(the “monodromy” around it).

GDR is, therefore, possible. Let us do it explicitly.

29



GDR w.r.t. S Duality

Following the recipe, the make the following ansatz:

[ M(E) = NyIMP(2)N(y),

$ B&) A)B®(z),

D(z) = D°(a),

\

where we have denoted by a superscript ® the bare
y-independent fields and where A(y) is a y-dependent
Sl1(2,7) transformation. The y-dependence is better
defined in the continuum SI(2,R) case. If {T;} are the
generators

A(y) = exp {5ym'T;} .

The three real parameters m! fully determine A(y) and
therefore the particular compactification. These pa-
rameters are going to become masses in the lower-
dimensional theory. We define the mass matrix m =
m!T; € sl(2,R) which transforms in the adjoint

m' = AmA~!,
and thus the three m! transform as a triplet.
The monodromies of the fields are given by M = e™/?;
M(z,y+1) = MM(z,y)M",

Blz,y+1) = MB(z,y).

We can now reduce. We find a theory with the same
fields but new mass terms and couplings.

30



Massive d =9, N =2 SUGRA

Apart from some mass terms in the topological term,
the theory is characterized by the new field strengths:

( DM = oM — (mM+ MmT) Ay,
Foy = 20Ag),
Fpy = 2040y +mApy,
< Fzy = 304p) - 341 Fy),
Fuay = 40A@) — 3A’(§) n Froy + 2,4?(7{) n Fs
\ —6AmA Ly n Fa),

the presence of a potential
Y (M) = %Tr (m2 + m./\/lmT./\/l_l) :

and the invariance under the following massive gauge
transformations

oy = —Xx,
M = XM eX™ |
< Ay = Aq) + 90X,
Ay = ™Ay,
\ A”(Q) = eX™m (A(2) — 2(9xA(1)> :

31



Physical Interpretation: pg-7-branes

A mass matrix m giving rise to a monodromy matrix
M = e™/? ¢ SI(2,7Z) characterizes the vacuum. We
have seen that in the GDR context the vacuum can
be seen as containing (d — 3) = 7-branes. Let us
identify them.

First, we have D-7-branes

( —-1/2 — 1/2 ;5
ds2 = Hp'? [dit? — di,?] — HY?dz,2,
{ 2600 = H2_
| OOy = Ee P

and for a single D-7-brane
Hp7 = hprlog |Z>| .
In terms of the complex scalar \
~ ie P hprlogw,
A= A w = x5 + iz3,
e P°hprlogw,
The charge of a D-7-brane is just
— *(9) — ¢ 1) — ~(0) — )
p = 557 G\Z = fVG = fde _§Re§7d>\

= F2me %hp7,

32



If we take the unit charge D-7-brane

- 1
Ap=1) = o logw,

and travel once along the path v(¢), £ € [0, 1], around
the origin

Xo=n)[Y(D] = Xp=n)[v(0)] + 1 = (Mp=1)Ap=1)) [7(0)],

1 1

where M,—,) is the SL(2,Z) monodromy matrix char-
acterizing the 7-brane with charge p = 1.

To define the charges in more general cases we ook
to the scalar equations of motion

V. JH=0, T = QBHMM_l ,

which are the conservation of 2 independent currents.
We can define the charge matrix Q by

QE%]{ J=7{ dMM™ 1.

It transforms in the adjoint representation. It is easy
to see that a configuration with charge Q also has
a monodromy matrix (also in the compact dimension
case)

M = e9/?2
The unit charge D-7-brane has the charge matrix

- (38)
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We can generate a new kind of 7-brane, “Q-7-brane”

by applying S = ( _01 (1) ) to the D-7-brane. It has

charge matrix Q = ( 8 —2 ) and it has the form
( dg%IB — (H12W + A2)1/2 [HB%/Q (nijdyidyj - dyz)
—HF dwdas]
) A = -1/(-A+iHp7),
Hpr = zlogww,
| A = ilogw/w.

The T transformation generates out of the D-7-brane
a configuration with a different constant value for
C(® . Although this is the only difference with the orig-
inal D-7-brane solution, this constant value induces
g-charge through the Witten effect. The presence
of both p and ¢ charges induces r-charge which here
seems not to be independent.

34



Eleven-Dimensional Origin and T Duality

With only m3 # 0, it is known that the massive 9-
dimensional theory can be obtained from Romans’ 10-
dimensional massive N = 2A theory.

Bergshoeff, de Roo, Green,
Papadopoulos & Townsend

This cannot be derived from the standard 11-dimensional
SUGRA. It can be derived from a non-covariant gener-
alization in which an isometric direction is singled out.
This theory could be interpreted as one in which there

is a “KK9-brane” in he background. Such an object
would be similar to the KK-monopole in having an
isometric, compact, direction and would be described
by a gauged o-model.

Bergshoeff, Janssen & T.O.
Bergshoeff, Lozano & T.O.
Hull

Taking into account that we have obtained an Si(2,7Z)-
covariant family of massive 9-dimensional SUGRA the-
ories, it is clear that there must be 2 KK9-branes in
the background singling out 2 isometric directions.
Sl1(2,7) rotates them in internal space.

Reducing in one of those directions one gets a gener-
alization of Romans’ theory with one KK8-brane sin-
gling one one direction.

Let us show the “massive” l1ll-dimensional SUGRA
theory.
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‘“‘Massive’” 11l-dimensional SUGRA

Having this theory we can find the T duality rules and
check the following duality connections:

36
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d=11 KK7 KK
(61113) ( 111
d=10,A SHA KK6A KK7A KK8A
5,04 (513 (6,1,2) (7,1,1)
y
D¢
)8,0,
(5,13 (7,1,2)
d=10,B KK6B KK8B




Start with the 11-dimensional KK monopole which
we call KK-7M-brane. This is a 7-dimensional, purely
gravitational object, but one of the spacelike world-
volume directions, with coordinate z is compactified
on a circle. Its metric is given by

( d2 = mydyidy — H' (d2? 4 Apde™)”
KKTM | o,
(63 17 3) _de3 ’

We can reduce this solution in three different ways. In
isometry direction, z, one gets the D-6-brane. Reduc-
ing on one of the standard spacelike worldvolume di-
rections (double dimensional reduction) gives the KK-
6A-brane, (the 10-dimensional KK monopole).

If we reduce it on a transverse coordinate, z3:

(- . g \-1/2 o o
sty = (m) [ﬂz‘jdy’dy” — gy ds” — Hdwdw] :
3 ~3/4
KK7A )] ¢ = () "
(6,1,2)
A1) — A
C( )E —  H24A2>
\ awA — ’l:awH,

where w = z! +iz?2 and A = A3 and the last equation

is simply 29, A, = emnpOpH With the assumption that
H does not depend on z3 and in the A; = A, = 0
gauge.
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To relate it with type IIB solutions, we further reduce
it in the isometry direction z. The resulting solution
is a 9-dimensional “Q-6-brane’:

y

ds2, = (H2+ 42)"7 [H-\2y,dyidy — HY?dwds) |
_ H 1
(6Qggz) ] ¢ = ()
) ) o A
CcO = wip
| LA = i0,H.

Notice that we have obtained two different solutions
by reducing first on z and then on z3 and in the inverse
order. The difference is a rotation in internal space
z,x3 and, by T duality to an S duality transformation
in the type IIB side.

We can now uplift this solution using the type IIB
rules and adding the coordinate y. We obtain the
Q-7-brane solution.
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conclusion

e We have explored GDR and applied it, in the
most general possible way to d = 10,N = 2B
SUGRA to obtain massive 9-dimensional SUG-
RAs. The different theories are related by SI(2,7Z)
transformations and labeled by the mass matrix
which tells us which 7-branes we have in the back-
ground.

e \We have studied the 7-brane solutions and found
a new one, the "Q-7-brane” which is related to
the KK monopole. D-7-branes and Q-7-branes
enter into an Si(2,7Z) triplet of charges. The third
charge does not seem to be independent.

e \We have found and interpreted the 11-dimensional
origin of the massive 9-dimensional theory.

e General perspective on massive SUGRASs: U du-
ality covariant massive d = 4, N = 8 SUGRA?

e Now we have a more complete picture of the ex-
tended solitons of M theory and string theory —
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d=11
KK9
D8
1A
7 KK8A KK9A
d=10
D9
1B
KK8B
T Duality
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Direct Dimensional Reduction

Double Dimensional Reduction



